
Behat API Extension Documentation
Release 4.0.0

Christer Edvartsen

Mar 27, 2023

Contents

1 Installation guide 3
1.1 Requirements . 3
1.2 Installation . 3
1.3 Configuration . 3
1.4 Upgrading . 4

2 End user guide 11
2.1 Set up the request . 11
2.2 Send the request . 16
2.3 Verify server response . 16
2.4 Extending the extension . 29

i

ii

Behat API Extension Documentation, Release 4.0.0

An open source (MIT licensed) Behat extension that provides an easy way to test JSON-based APIs in Behat 3.

Contents 1

http://opensource.org/licenses/MIT

Behat API Extension Documentation, Release 4.0.0

2 Contents

CHAPTER 1

Installation guide

1.1 Requirements

Refer to composer.json for more details.

1.2 Installation

Install the extension using Composer:

composer require --dev imbo/behat-api-extension

1.3 Configuration

After you have installed the extension you need to activate it in your Behat configuration file (for instance behat.
yml):

default:
suites:
default:
...

extensions:
Imbo\BehatApiExtension: ~

The following configuration options are required for the extension to work as expected:

Key Type Default value Description
apiClient.base_uri string http://localhost:8080 Base URI of the application under test.

3

https://getcomposer.org/
http://localhost:8080

Behat API Extension Documentation, Release 4.0.0

It should be noted that everything in the apiClient configuration array is passed directly to the Guzzle Client
instance used internally by the extension.

Example of a configuration file with several configuration entries:

default:
suites:
default:
...

extensions:
Imbo\BehatApiExtension:

apiClient:
base_uri: http://localhost:8080
timeout: 5.0
verify: false

Refer to the Guzzle documentation for available configuration options for the Guzzle client.

1.4 Upgrading

This section will cover breaking changes between major versions and other related information to ease upgrading to
the latest version.

1.4.1 Migration from v3.x to v4.x

Changes

• PHP version requirement

• Type hints

PHP version requirement

v4.x requires PHP >= 8.1.

Type hints

Type hints have been added to a plethora of the code base, so child classes will most likely break as a consequence.
You will have to add missing type hints if you have extended any classes that have type hints added to them.

1.4.2 Migration from v2.x to v3.x

The usage of Behat API Extension itself has not changed between these versions, but >=3.0 requires PHP >= 7.4.

4 Chapter 1. Installation guide

http://docs.guzzlephp.org/en/stable/

Behat API Extension Documentation, Release 4.0.0

1.4.3 Migrating from v1.x to v2.x

Changes

• Configuration change

• Renamed public methods

• Updated steps

• Functions names for the JSON matcher

• Exceptions

Configuration change

In v1 the extension only had a single configuration option, which was base_uri. This is still an option in v2, but it
has been added to an apiClient key.

v1 behat.yml

default:
suites:
default:
...

extensions:
Imbo\BehatApiExtension:

base_uri: http://localhost:8080

v2 behat.yml

default:
suites:
default:
...

extensions:
Imbo\BehatApiExtension:

apiClient:
base_uri: http://localhost:8080

Renamed public methods

The following public methods in the Imbo\BehatApiExtension\Context\ApiContext class have been
renamed:

1.4. Upgrading 5

Behat API Extension Documentation, Release 4.0.0

v1 method name v2 method name
givenIAttachAFileToTheRequest addMultipartFileToRequest
givenIAuthenticateAs setBasicAuth
givenTheRequestHeaderIs addRequestHeader
giventhefollowingformparametersareset setRequestFormParams
givenTheRequestBodyIs setRequestBody
givenTheRequestBodyContains setRequestBodyToFileResource
whenIRequestPath requestPath
thenTheResponseCodeIs assertResponseCodeIs
thenTheResponseCodeIsNot assertResponseCodeIsNot
thenTheResponseReasonPhraseIs assertResponseReasonPhraseIs
thenTheResponseStatusLineIs assertResponseStatusLineIs
thenTheResponseIs assertResponseIs
thenTheResponseIsNot assertResponseIsNot
thenTheResponseHeaderExists assertResponseHeaderExists
thenTheResponseHeaderDoesNotExist assertResponseHeaderDoesNotExists
thenTheResponseHeaderIs assertResponseHeaderIs
thenTheResponseHeaderMatches assertResponseHeaderMatches
thenTheResponseBodyIsAnEmptyObject assertResponseBodyIsAnEmptyJsonObject
thenTheResponseBodyIsAnEmptyArray assertResponseBodyIsAnEmptyJsonArray
thenTheResponseBodyIsAnArrayOfLength assertResponseBodyJsonArrayLength
thenTheResponseBodyIsAnArrayWithALengthOfAtLeastassertResponseBodyJsonArrayMinLength
thenTheResponseBodyIsAnArrayWithALengthOfAtMostassertResponseBodyJsonArrayMaxLength
thenTheResponseBodyIs assertResponseBodyIs
thenTheResponseBodyMatches assertResponseBodyMatches
thenTheResponseBodyContains assertResponseBodyContainsJson

Some methods have also been removed (as the result of removed steps):

• whenIRequestPathWithBody

• whenIRequestPathWithJsonBody

• whenISendFile

Updated steps

v1 contained several When steps that could configure the request as well as sending it, in the same step. These steps
has been removed in v2.0.0, and the extension now requires you to configure all aspects of the request using the
Given steps prior to issuing one of the few When steps.

Removed / updated steps

• Given the request body is :string

• When I request :path using HTTP :method with body: <PyStringNode>

• When I request :path using HTTP :method with JSON body: <PyStringNode>

• When I send :filePath (as :mimeType) to :path using HTTP :method

• Then the response body is an empty object

• Then the response body is an empty array

6 Chapter 1. Installation guide

Behat API Extension Documentation, Release 4.0.0

• Then the response body is an array of length :length

• Then the response body is an array with a length of at least :length

• Then the response body is an array with a length of at most :length

• Then the response body contains: <PyStringNode>

Given the request body is :string

This step now uses a <PyStringNode> instead of a regular string:

v1

Given the request body is "some data"

v2

Given the request body is:
"""
some data
"""

When I request :path using HTTP :method with body: <PyStringNode>

The body needs to be set using a Given step and not in the When step:

v1

When I request "/some/path" using HTTP POST with body:
"""
{"some":"data"}
"""

v2

Given the request body is:
"""
{"some":"data"}
"""

When I request "/some/path" using HTTP POST

When I request :path using HTTP :method with JSON body: <PyStringNode>

The Content-Type header and body needs to be set using Given steps:

v1

When I request "/some/path" using HTTP POST with JSON body:
"""
{"some":"data"}
"""

v2

1.4. Upgrading 7

Behat API Extension Documentation, Release 4.0.0

Given the request body is:
"""
{"some":"data"}
"""

And the "Content-Type" request header is "application/json"
When I request "/some/path" using HTTP POST

When I send :filePath (as :mimeType) to :path using HTTP :method

These steps must be replaced with the following:

v1

When I send "/some/file.jpg" to "/some/endpoint" using HTTP POST

When I send "/some/file" as "application/json" to "/some/endpoint" using HTTP POST

v2

Given the request body contains "/some/file.jpg"
When I request "/some/endpoint" using HTTP POST

Given the request body contains "/some/file"
And the "Content-Type" request header is "application/json"
When I request "/some/endpoint" using HTTP POST

The first form in the old and new versions will guess the mime type of the file and set the Content-Type request
header accordingly.

Then the response body is an empty object

Slight change that adds “JSON” in the step text for clarification:

v1

Then the response body is an empty object

v2

Then the response body is an empty JSON object

Then the response body is an empty array

Slight change that adds “JSON” in the step text for clarification:

v1

Then the response body is an empty array

v2

Then the response body is an empty JSON array

8 Chapter 1. Installation guide

Behat API Extension Documentation, Release 4.0.0

Then the response body is an array of length :length

Slight change that adds “JSON” in the step text for clarification:

v1

Then the response body is an array of length 5

v2

Then the response body is a JSON array of length 5

Then the response body is an array with a length of at least :length

Slight change that adds “JSON” in the step text for clarification:

v1

Then the response body is an array with a length of at least 5

v2

Then the response body is a JSON array with a length of at least 5

Then the response body is an array with a length of at most :length

Slight change that adds “JSON” in the step text for clarification:

v1

Then the response body is an array with a length of at most 5

v2

Then the response body is a JSON array with a length of at most 5

Then the response body contains: <PyStringNode>

Slight change that adds “JSON” in the step text for clarification:

v1

Then the response body contains:
"""
{"some": "value"}
"""

v2

Then the response body contains JSON:
"""
{"some": "value"}
"""

1.4. Upgrading 9

Behat API Extension Documentation, Release 4.0.0

Functions names for the JSON matcher

When recursively checking a JSON response body, some custom functions exist that is represented as the value in a
key / value pair. Below is a table of all available functions in v1 along with the updated names used in v2:

v1 function v2 function
@length(num) @arrayLength(num)
@atLeast(num) @arrayMinLength(num)
@atMost(num) @arrayMaxLength(num)
<re>/pattern/</re> @regExp(/pattern/)

v2 have also added more such functions, refer to the Custom matcher functions and targeting section for a complete
list.

Exceptions

The extension will from v2 on throw native PHP exceptions or namespaced exceptions (like for instance
Imbo\BehatApiExtension\Exception\AssertionException). In v1 exceptions could come directly
from beberlei/assert, which is the assertion library used in the extension. The fact that the extension uses this
library is an implementation detail, and it should be possible to switch out this library without making any changes to
the public API of the extension.

If versions after v2 throws other exceptions it should be classified as a bug and fixed accordingly.

10 Chapter 1. Installation guide

CHAPTER 2

End user guide

2.1 Set up the request

The following steps can be used prior to sending a request.

Available steps

• Given I attach :path to the request as :partName

• Given the following multipart form parameters are set: <TableNode>

• Given I am authenticating as :username with password :password

• Given I get an OAuth token using password grant from :path with :username and :password in scope
:scope using client ID :clientId (and client secret :clientSecret)

• Given the :header request header is :value

• Given the :header request header contains :value

• Given the following form parameters are set: <TableNode>

• Given the request body is: <PyStringNode>

• Given the request body contains :path

• Given the response body contains a JWT identified by :name, signed with :secret: <PyStringNode>

• Given the query parameter :name is :value

• Given the query parameter :name is: <TableNode>

• Given the following query parameters are set: <TableNode>

11

Behat API Extension Documentation, Release 4.0.0

2.1.1 Given I attach :path to the request as :partName

Attach a file to the request (causing a multipart/form-data request, populating the $_FILES array on the
server). Can be repeated to attach several files. If a specified file does not exist an InvalidArgumentException
exception will be thrown. :path is relative to the working directory unless it’s absolute.

Examples:

Step :path Entry in $_FILES on the
server (:partName)

Given I attach “/path/to/file.jpg” to the re-
quest as “file1”

/path/to/file.
jpg

$_FILES[’file1’]

Given I attach “c:\some\file.jpg” to the re-
quest as “file2”

c:\some\file.
jpg

$_FILES[’file2’]

Given I attach “features/some.feature” to
the request as “feature”

features/some.
feature

$_FILES[’feature’]

This step can not be used when sending requests with a request body. Doing so results in an
InvalidArgumentException exception.

2.1.2 Given the following multipart form parameters are set: <TableNode>

This step can be used to set form parameters (as if the request is a <form> being submitted). A table node must be
used to specify which fields / values to send:

Given the following multipart form parameters are set:
name	value
foo	bar
bar	foo
bar	bar

The first row in the table must contain two values: name and value. The rows that follows are the fields / values
you want to send. This step sets the HTTP method to POST by default and the Content-Type request header to
multipart/form-data.

This step can not be used when sending requests with a request body. Doing so results in an
InvalidArgumentException exception.

To use a different HTTP method, simply specify the wanted method in the When I request :path using HTTP :method
step.

2.1.3 Given I am authenticating as :username with password :password

Use this step to set up basic authentication to the next request.

Examples:

Step :username :password
Given I am authenticating as “foo” with password “bar” foo bar

12 Chapter 2. End user guide

Behat API Extension Documentation, Release 4.0.0

2.1.4 Given I get an OAuth token using password grant from :path with :username
and :password in scope :scope using client ID :clientId (and client secret
:clientSecret)

Send a request using password grant to the given :path for an access token that will be added as a Authorization
header for the next request. The endpoint is required to respond with a JSON object that contains the access_token
key, for instance:

{
"access_token": "some-token"

}

Given the above response body, the next request will have the following header set: Authorization: Bearer
some-token.

Examples:

Given I get an OAuth token using password grant from "/token" with "user" and
→˓"password" in scope "scope" using client ID "id" and client secret "secret"
When I request "/path/that/requires/token/in/header"

The second step in the above example will include the required Authorization header given the response from
/token as seen in the first step.

2.1.5 Given the :header request header is :value

Set the :header request header to :value. Can be repeated to set multiple headers. When repeated with the same
:header the last value will be used.

Trying to force specific headers to have certain values combined with other steps that ends up modifying request
headers (for instance attaching files) can lead to undefined behavior.

Examples:

Step :header :value
Given the “User-Agent” request header is “test/1.0” User-Agent test/1.0
Given the “Accept” request header is “application/json” Accept application/json

2.1.6 Given the :header request header contains :value

Add :value to the :header request header. Can be repeated to set multiple headers. When repeated with the same
:header the header will be converted to an array.

Examples:

Step :header :value
Given the “X-Foo” request header contains “Bar” X-Foo Bar

2.1.7 Given the following form parameters are set: <TableNode>

This step can be used to set form parameters (as if the request is a <form> being submitted). A table node must be
used to specify which fields / values to send:

2.1. Set up the request 13

Behat API Extension Documentation, Release 4.0.0

Given the following form parameters are set:
name	value
foo	bar
bar	foo
bar	bar

The first row in the table must contain two values: name and value. The rows that follows are the fields / values
you want to send. This step sets the HTTP method to POST by default and the Content-Type request header to
application/x-www-form-urlencoded, unless the step is combined with Given I attach :path to the request
as :partName, in which case the Content-Type request header will be set to multipart/form-data and all
the specified fields will be sent as parts in the multipart request.

This step can not be used when sending requests with a request body. Doing so results in an
InvalidArgumentException exception.

To use a different HTTP method, simply specify the wanted method in the When I request :path using HTTP :method
step.

2.1.8 Given the request body is: <PyStringNode>

Set the request body to a string represented by the contents of the <PyStringNode>.

Examples:

Given the request body is:
"""
{

"some": "data"
}
"""

2.1.9 Given the request body contains :path

This step can be used to set the contents of the file at :path in the request body. If the file does not exist or is not
readable the step will fail.

Examples:

Step :path
Given the request body contains “/path/to/file” /path/to/file

The step will figure out the mime type of the file (using mime_content_type) and set the Content-Type request
header as well. If you wish to override the mime type you can use the Given the :header request header is :value step
after setting the request body.

2.1.10 Given the response body contains a JWT identified by :name, signed with
:secret: <PyStringNode>

This step can be used to prepare the JWT custom matcher function with data that it is going to match on. If the
response contains JWTs these can be registered with this step, then matched with the Then the response body contains
JSON: <PyStringNode> step after the response has been received. The <PyStringNode> represents the payload
of the JWT:

14 Chapter 2. End user guide

http://php.net/mime_content_type
https://jwt.io/

Behat API Extension Documentation, Release 4.0.0

Examples:

Given the response body contains a JWT identified by "my JWT", signed with "some
→˓secret":

"""
{

"some": "data",
"value": "@regExp(/(some|expression)/i)"

}
"""

The above step would register a JWT which can be matched with @jwt(my JWT) using the @jwt() custom matcher
function. The way the payload is matched is similar to matching a JSON response body, as explained in the Then the
response body contains JSON: <PyStringNode> section, which means custom matcher functions can be used, as seen
in the example above.

2.1.11 Given the query parameter :name is :value

This step can be used to set a single query parameter to a specific value for the upcoming request.

Examples:

Given the query parameter "foo" is "bar"
And the query parameter "bar" is "foo"
When I request "/path"

The above steps would end up with a request to /path?foo=bar&bar=foo.

Note: When this step is used all query parameters specified in the path portion of When I request "/path"
are ignored.

2.1.12 Given the query parameter :name is: <TableNode>

This step can be used to set multiple values to a single query parameter for the upcoming request.

Examples:

Given the query parameter "foo" is:
| value |
| foo |
| bar |

When I request "/path"

The above steps would end up with a request to /path?foo[0]=foo&foo[1]=bar.

Note: When this step is used all query parameters specified in the path portion of When I request "/path"
are ignored.

2.1.13 Given the following query parameters are set: <TableNode>

This step can be used to set multiple query parameters at once for the upcoming request.

2.1. Set up the request 15

Behat API Extension Documentation, Release 4.0.0

Examples:

Given the following query parameters are set:
name	value
foo	bar
bar	foo

When I request "/path"

The above steps would end up with a request to /path?foo=bar&bar=foo.

Note: When this step is used all query parameters specified in the path portion of When I request "/path"
are ignored.

2.2 Send the request

After setting up the request it can be sent to the server in a few different ways. Keep in mind that all configuration
regarding the request must be done prior to any of the following steps, as they will actually send the request.

Available steps

• When I request :path

• When I request :path using HTTP :method

2.2.1 When I request :path

Request :path using HTTP GET. Shorthand for When I request :path using HTTP GET .

2.2.2 When I request :path using HTTP :method

:path is relative to the base_uri configuration option, and :method is any HTTP method, for instance POST or
DELETE. If :path starts with a slash, it will be relative to the root of base_uri.

Examples:

Assume that the ‘‘base_uri‘‘ configuration option has been set to ‘‘http://example.com/dir‘‘ in the following examples.

Step :path :methodResulting URI
When I request “/?
foo=bar&bar=foo”

/?
foo=bar&bar=foo

GET http://example.com/?
foo=bar&bar=foo

When I request “/some/path” using
HTTP DELETE

/some/path DELETE http://example.com/some/
path

When I request “foobar” using HTTP
POST

foobar POST http://example.com/dir/
foobar

2.3 Verify server response

After a request has been sent, some steps exist that can be used to verify the response from the server.

16 Chapter 2. End user guide

Behat API Extension Documentation, Release 4.0.0

Available steps

• Then the response code is :code

• Then the response code is not :code

• Then the response reason phrase is :phrase

• Then the response reason phrase is not :phrase

• Then the response reason phrase matches :pattern

• Then the response status line is :line

• Then the response status line is not :line

• Then the response status line matches :pattern

• Then the response is :group

• Then the response is not :group

• Then the :header response header exists

• Then the :header response header does not exist

• Then the :header response header is :value

• Then the :header response header is not :value

• Then the :header response header matches :pattern

• Then the response body is empty

• Then the response body is an empty JSON object

• Then the response body is an empty JSON array

• Then the response body is a JSON array of length :length

• Then the response body is a JSON array with a length of at least :length

• Then the response body is a JSON array with a length of at most :length

• Then the response body is: <PyStringNode>

• Then the response body is not: <PyStringNode>

• Then the response body matches: <PyStringNode>

• Then the response body contains JSON: <PyStringNode>

– Regular value matching

– Custom matcher functions and targeting

2.3.1 Then the response code is :code

Asserts that the response code equals :code.

Examples:

• Then the response code is 200

• Then the response code is 404

2.3. Verify server response 17

Behat API Extension Documentation, Release 4.0.0

2.3.2 Then the response code is not :code

Asserts that the response code does not equal :code.

Examples:

• Then the response code is not 200

• Then the response code is not 404

2.3.3 Then the response reason phrase is :phrase

Assert that the response reason phrase equals :phrase. The comparison is case sensitive.

Examples:

• Then the response reason phrase is “OK”

• Then the response reason phrase is “Bad Request”

2.3.4 Then the response reason phrase is not :phrase

Assert that the response reason phrase does not equal :phrase. The comparison is case sensitive.

Examples:

• Then the response reason phrase is not “OK”

• Then the response reason phrase is not “Bad Request”

2.3.5 Then the response reason phrase matches :pattern

Assert that the response reason phrase matches the regular expression :pattern. The pattern must be a valid regular
expression, including delimiters, and can also include optional modifiers.

Examples:

• Then the response reason phrase matches “/ok/i”

• Then the response reason phrase matches “/OK/”

For more information regarding regular expressions and the usage of modifiers, refer to the PHP manual.

2.3.6 Then the response status line is :line

Assert that the response status line equals :line. The comparison is case sensitive.

Examples:

• Then the response status line is “200 OK”

• Then the response status line is “304 Not Modified”

18 Chapter 2. End user guide

http://php.net/pcre

Behat API Extension Documentation, Release 4.0.0

2.3.7 Then the response status line is not :line

Assert that the response status line does not equal :line. The comparison is case sensitive.

Examples:

• Then the response status line is not “200 OK”

• Then the response status line is not “304 Not Modified”

2.3.8 Then the response status line matches :pattern

Assert that the response status line matches the regular expression :pattern. The pattern must be a valid regular
expression, including delimiters, and can also include optional modifiers.

Examples:

• Then the response status line matches “/200 ok/i”

• Then the response status line matches “/200 OK/”

For more information regarding regular expressions and the usage of modifiers, refer to the PHP manual.

2.3.9 Then the response is :group

Asserts that the response is in :group.

Allowed groups and their response code ranges are:

Group Response code range
informational 100 to 199
success 200 to 299
redirection 300 to 399
client error 400 to 499
server error 500 to 599

Examples:

• Then the response is “informational”

• Then the response is “client error”

2.3.10 Then the response is not :group

Assert that the response is not in :group.

Allowed groups and their ranges are:

Group Response code range
informational 100 to 199
success 200 to 299
redirection 300 to 399
client error 400 to 499
server error 500 to 599

Examples:

2.3. Verify server response 19

http://php.net/pcre

Behat API Extension Documentation, Release 4.0.0

• Then the response is not “informational”

• Then the response is not “client error”

2.3.11 Then the :header response header exists

Assert that the :header response header exists. The value of :header is case-insensitive.

Examples:

• Then the “Vary” response header exists

• Then the “content-length” response header exists

2.3.12 Then the :header response header does not exist

Assert that the :header response header does not exist. The value of :header is case-insensitive.

Examples:

• Then the “Vary” response header does not exist

• Then the “content-length” response header does not exist

2.3.13 Then the :header response header is :value

Assert that the value of the :header response header equals :value. The value of :header is case-insensitive,
but the value of :value is not.

Examples:

• Then the “Content-Length” response header is “15000”

• Then the “X-foo” response header is “foo, bar”

2.3.14 Then the :header response header is not :value

Assert that the value of the :header response header does not equal :value. The value of :header is case-
insensitive, but the value of :value is not.

Examples:

• Then the “Content-Length” response header is not “15000”

• Then the “X-foo” response header is not “foo, bar”

2.3.15 Then the :header response header matches :pattern

Assert that the value of the :header response header matches the regular expression :pattern. The pattern must
be a valid regular expression, including delimiters, and can also include optional modifiers. The value of :header is
case-insensitive.

Examples:

• Then the “content-length” response header matches “/[0-9]+/”

• Then the “x-foo” response header matches “/(FOO|BAR)/i”

20 Chapter 2. End user guide

Behat API Extension Documentation, Release 4.0.0

• Then the “X-FOO” response header matches “/^(foo|bar)$/”

For more information regarding regular expressions and the usage of modifiers, refer to the PHP manual.

2.3.16 Then the response body is empty

Assert that the response body is empty.

2.3.17 Then the response body is an empty JSON object

Assert that the response body is an empty JSON object ({}).

2.3.18 Then the response body is an empty JSON array

Assert that the response body is an empty JSON array ([]).

2.3.19 Then the response body is a JSON array of length :length

Assert that the length of the JSON array in the response body equals :length.

Examples:

• Then the response body is a JSON array of length 1

• Then the response body is a JSON array of length 3

If the response body does not contain a JSON array, the test will fail.

2.3.20 Then the response body is a JSON array with a length of at least :length

Assert that the length of the JSON array in the response body has a length of at least :length.

Examples:

• Then the response body is a JSON array with a length of at least 4

• Then the response body is a JSON array with a length of at least 5

If the response body does not contain a JSON array, the test will fail.

2.3.21 Then the response body is a JSON array with a length of at most :length

Assert that the length of the JSON array in the response body has a length of at most :length.

Examples:

• Then the response body is a JSON array with a length of at most 4

• Then the response body is a JSON array with a length of at most 5

If the response body does not contain a JSON array, the test will fail.

2.3. Verify server response 21

http://php.net/pcre

Behat API Extension Documentation, Release 4.0.0

2.3.22 Then the response body is: <PyStringNode>

Assert that the response body equals the text found in the <PyStringNode>. The comparison is case-sensitive.

Examples:

Then the response body is:
"""
{"foo":"bar"}
"""

Then the response body is:
"""
foo
"""

2.3.23 Then the response body is not: <PyStringNode>

Assert that the response body does not equal the value found in <PyStringNode>. The comparison is case sensi-
tive.

Examples:

Then the response body is not:
"""
some value
"""

2.3.24 Then the response body matches: <PyStringNode>

Assert that the response body matches the regular expression pattern found in <PyStringNode>. The expression
must be a valid regular expression, including delimiters and optional modifiers.

Examples:

Then the response body matches:
"""
/^{"FOO": ?"BAR"}$/i
"""

Then the response body matches:
"""
/foo/
"""

2.3.25 Then the response body contains JSON: <PyStringNode>

Used to recursively match the response body (or a subset of the response body) against a JSON blob.

In addition to regular value matching some custom matching-functions also exist, for asserting value types, array
lengths and so forth. There is also a regular expression type matcher that can be used to match string values.

22 Chapter 2. End user guide

Behat API Extension Documentation, Release 4.0.0

Regular value matching

Assume the following JSON response for the examples in this section:

{
"string": "string value",
"integer": 123,
"double": 1.23,
"bool": true,
"null": null,
"object":
{
"string": "string value",
"integer": 123,
"double": 1.23,
"bool": true,
"null": null,
"object":
{

"string": "string value",
"integer": 123,
"double": 1.23,
"bool": true,
"null": null

}
},
"array":
[
"string value",
123,
1.23,
true,
null,
{

"string": "string value",
"integer": 123,
"double": 1.23,
"bool": true,
"null": null

}
]

}

Example: Regular value matching of a subset of the response

Then the response body contains JSON:
"""
{

"string": "string value",
"bool": true

}
"""

Example: Check values in objects

Then the response body contains JSON:
"""
{

(continues on next page)

2.3. Verify server response 23

Behat API Extension Documentation, Release 4.0.0

(continued from previous page)

"object":
{

"string": "string value",
"object":
{
"null": null,
"integer": 123

}
}

}
"""

Example: Check numerically indexed array contents

Then the response body contains JSON:
"""
{

"array":
[

true,
"string value",
{
"integer": 123

}
]

}
"""

Notice that the order of the values in the arrays does not matter. To be able to target specific indexes in an array a
special syntax needs to be used. Please refer to Custom matcher functions and targeting for more information and
examples.

Custom matcher functions and targeting

In some cases the need for more advanced matching arises. All custom functions is used in place of the string value
they are validating, and because of the way JSON works, they need to be specified as strings to keep the JSON valid.

• Array length - @arrayLength / @arrayMaxLength / @arrayMinLength

• Variable type - @variableType

• Regular expression matching - @regExp

• Match specific keys in a numerically indexed array - <key>[<index>]

• Numeric comparison - @gt / @lt

• JWT token matching - @jwt

Array length - @arrayLength / @arrayMaxLength / @arrayMinLength

Three functions exist for asserting the length of regular numerically indexed JSON arrays, @arrayLength,
@arrayMaxLength and @arrayMinLength. Given the following response body:

24 Chapter 2. End user guide

Behat API Extension Documentation, Release 4.0.0

{
"items":
[
"foo",
"bar",
"foobar",
"barfoo",
123

]
}

one can assert the exact length using @arrayLength:

Then the response body contains JSON:
"""
{"items": "@arrayLength(5)"}
"""

or use the relative length matchers:

Then the response body contains JSON:
"""
{"items": "@arrayMaxLength(10)"}
"""

And the response body contains JSON:
"""
{"items": "@arrayMinLength(3)"}
"""

Variable type - @variableType

To be able to assert the variable type of specific values, the @variableType function can be used. The following
types can be asserted:

• bool / boolean

• int / integer

• double / float

• string

• array

• object

• null

• scalar

• any

Given the following response:

{
"bool value": true,
"int value": 123,
"double value": 1.23,
"string value": "some string",

(continues on next page)

2.3. Verify server response 25

Behat API Extension Documentation, Release 4.0.0

(continued from previous page)

"array value": [1, 2, 3],
"object value": {"foo": "bar"},
"null value": null,
"scalar value": 3.1416

}

the type of the values can be asserted like this:

Then the response body contains JSON:
"""
{

"bool value": "@variableType(bool)",
"int value": "@variableType(int)",
"double value": "@variableType(double)",
"string value": "@variableType(string)",
"array value": "@variableType(array)",
"object value": "@variableType(object)",
"null value": "@variableType(null)",
"scalar value": "@variableType(scalar)"

}
"""

The bool, int and double types can also be expressed using boolean, integer and float respectively. There
is no difference in the actual validation being executed.

For the @variableType(scalar) assertion refer to the is_scalar function in the PHP manual as to what is con-
sidered to be a scalar.

When using any as a type, the validation will basically allow any types, including null. One can also match against
multiple types using | (for instance @variableType(int|double|string)). When using multiple types the
validation will succeed (and stop) as soon as the value being tested matches one of the supplied types. Validation is
done in the order specified.

Regular expression matching - @regExp

To use regular expressions to match values, the @regExp function exists, that takes a regular expression as an argu-
ment, complete with delimiters and optional modifiers. Example:

Then the response body contains JSON:
"""
{

"foo": "@regExp(/(some|expression)/i)",
"bar":
{

"baz": "@regExp(/[0-9]+/)"
}

}
"""

This can be used to match variables of type string, integer and float/double only, and the value that is
matched will be cast to a string before doing the match. Refer to the PHP manual regarding how regular expressions
work in PHP.

26 Chapter 2. End user guide

http://php.net/is_scalar
http://php.net/pcre

Behat API Extension Documentation, Release 4.0.0

Match specific keys in a numerically indexed array - <key>[<index>]

If you need to verify an element at a specific index within a numerically indexed array, use the key[<index>]
notation as the key, and not the regular field name. Consider the following response body:

{
"items":
[
"foo",
"bar",
{

"some":
{

"nested": "object",
"foo": "bar"

}
},
[1, 2, 3]

]
}

If you need to verify the values, use something like the following step:

Then the response body contains JSON:
"""
{

"items[0]": "foo",
"items[1]": "@regExp(/(foo|bar|baz)/)",
"items[2]":
{

"some":
{
"foo": "@regExp(/ba(r|z)/)"

}
},
"items[3]": "@arrayLength(3)"

}
"""

If the response body contains a numerical array as the root node, you will need to use a special syntax for validation.
Consider the following response body:

[
"foo",
123,
{
"foo": "bar"

},
"bar",
[1, 2, 3]

]

To validate this, use the following step:

Then the response body contains JSON:
"""
{

(continues on next page)

2.3. Verify server response 27

Behat API Extension Documentation, Release 4.0.0

(continued from previous page)

"[0]": "foo",
"[1]": 123,
"[2]":
{

"foo": "bar"
},
"[3]": "@regExp(/bar/)",
"[4]": "@arrayLength(3)"

}
"""

Numeric comparison - @gt / @lt

To verify that a numeric value is greater than or less than a value, the @gt and @lt functions can be used respectively.
Given the following response body:

{
"some-int": 123,
"some-double": 1.23,
"some-string": "123"

}

one can compare the numeric values using:

Then the response body contains JSON:
"""
{

"some-int": "@gt(120)",
"some-double": "@gt(1.20)",
"some-string": "@gt(120)"

}
"""

And the response body contains JSON:
"""
{

"some-int": "@lt(125)",
"some-double": "@lt(1.25)",
"some-string": "@lt(125)"

}
"""

JWT token matching - @jwt

To verify a JWT in the response body the @jwt() custom matcher function can be used. The argument it takes is the
name of a JWT token registered with the Given the response body contains a JWT identified by :name, signed with
:secret: <PyStringNode> step earlier in the scenario.

Given the following response body:

{
"value": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VyIjoiU29tZSB1c2VyIn0.DsGGNmDD-

→˓PBnwMLiQxeSHDGmKBSdP0lSmWuaiwSxfQE"
}

28 Chapter 2. End user guide

Behat API Extension Documentation, Release 4.0.0

one can validate the JWT using a combination of two steps:

Register the JWT
Given the response body contains a JWT identified by "my JWT", signed with "secret":

"""
{

"user": "Some user"
}
"""

Other steps ...

After the request has been made, one can match the JWT in the response
And the response body contains JSON:

"""
{

"value": "@jwt(my JWT)"
}
"""

2.4 Extending the extension

If you want to implement your own assertions, or for instance add custom authentication for all requests
made against your APIs you can extend the context class provided by the extension to access the client, re-
quest, request options, response and the array contains comparator properties. These properties are accessed via
the protected $this->client, $this->request, $this->requestOptions, $this->response and
$this->arrayContainsComparator properties respectively. Keep in mind that $this->response is not
populated until the client has made a request, i.e. after any of the aforementioned @When steps have finished.

2.4.1 Add @Given’s, @When’s and/or @Then’s

If you want to add a @Given, @When and/or @Then step, simply add a method in your FeatureContext class
along with the step using annotations in the phpdoc block:

<?php
use Imbo\BehatApiExtension\Context\ApiContext;
use Imbo\BehatApiExtension\Exception\AssertionFailedException;

class FeatureContext extends ApiContext
{

/**
* @Then I want to check something

*/
public function assertSomething()
{

// do some assertions on $this->response, and throw a AssertionFailedException
// exception if the assertion fails.

}
}

With the above example you can now use Then I want to check something can be used in your feature
files along with the steps defined by the extension.

2.4. Extending the extension 29

Behat API Extension Documentation, Release 4.0.0

2.4.2 Manipulate the API client

If you wish to manipulate the API client (GuzzleHttp\Client) this can be done in the initialization-phase:

<?php
use Imbo\BehatApiExtension\Context\ApiContext;
use GuzzleHttp\ClientInterface;
use GuzzleHttp\Middleware;
use Psr\Http\Message\RequestInterface;

class FeatureContext extends ApiContext
{

/**
* Manipulate the API client

*/
public function setClient(ClientInterface $client): self
{

$stack = $client->getConfig('handler');
$stack->push(Middleware::mapRequest(function (RequestInterface $request) {

// Add something to the request and return the new instance
return $request->withAddedHeader('Some-Custom-Header', 'some value');

}));

return parent::setClient($client);
}

}

2.4.3 Register custom matcher functions

The extension comes with some built in matcher functions used to verify JSON-content (see Then the response body
contains JSON: <PyStringNode>), like for instance @arrayLength and @regExp. These functions are basically
callbacks to PHP methods / functions, so you can easily define your own and use them in your tests:

<?php
use Imbo\BehatApiExtension\Context\ApiContext;
use Imbo\BehatApiExtension\ArrayContainsComparator;

class FeatureContext extends ApiContext
{

/**
* Add a custom function called @gt to the comparator

*/
public function setArrayContainsComparator(ArrayContainsComparator $comparator):

→˓self
{

$comparator->addFunction('gt', function ($num, $gt) {
$num = (int) $num;
$gt = (int) $gt;

if ($num <= $gt) {
throw new InvalidArgumentException(sprintf(

'Expected number to be greater than %d, got: %d.',
$gt,
$num

));
}

(continues on next page)

30 Chapter 2. End user guide

Behat API Extension Documentation, Release 4.0.0

(continued from previous page)

});

return parent::setArrayContainsComparator($comparator);
}

}

The above snippet adds a custom matcher function called @gt that can be used to check if a number is greater than
another number. Given the following response body:

{
"number": 42

}

the number in the number key could be verified with:

Then the response body contains JSON:
"""
{

"number": "@gt(40)"
}
"""

2.4. Extending the extension 31

	Installation guide
	Requirements
	Installation
	Configuration
	Upgrading

	End user guide
	Set up the request
	Send the request
	Verify server response
	Extending the extension

