

Behat API Extension

An open source (MIT licensed [http://opensource.org/licenses/MIT]) Behat extension that provides an easy way to test JSON-based APIs in Behat 3.

Installation guide

	Requirements

	Installation
	Using composer

	Configuration

	Upgrading
	Migrating from v1.x to v2.x

End user guide

	Set up the request
	Given I attach :path to the request as :partName

	Given the following multipart form parameters are set: <TableNode>

	Given I am authenticating as :username with password :password

	Given the :header request header is :value

	Given the :header request header contains :value

	Given the following form parameters are set: <TableNode>

	Given the request body is: <PyStringNode>

	Given the request body contains :path

	Given the response body contains a JWT identified by :name, signed with :secret: <PyStringNode>

	Send the request
	When I request :path

	When I request :path using HTTP :method

	Verify server response
	Then the response code is :code

	Then the response code is not :code

	Then the response reason phrase is :phrase

	Then the response reason phrase is not :phrase

	Then the response reason phrase matches :pattern

	Then the response status line is :line

	Then the response status line is not :line

	Then the response status line matches :pattern

	Then the response is :group

	Then the response is not :group

	Then the :header response header exists

	Then the :header response header does not exist

	Then the :header response header is :value

	Then the :header response header is not :value

	Then the :header response header matches :pattern

	Then the response body is an empty JSON object

	Then the response body is an empty JSON array

	Then the response body is a JSON array of length :length

	Then the response body is a JSON array with a length of at least :length

	Then the response body is a JSON array with a length of at most :length

	Then the response body is: <PyStringNode>

	Then the response body is not: <PyStringNode>

	Then the response body matches: <PyStringNode>

	Then the response body contains JSON: <PyStringNode>
	Regular value matching

	Custom matcher functions and targeting

	Extending the extension
	Add @Given’s, @When’s and/or @Then’s

	Manipulate the API client

	Register custom matcher functions

Requirements

Behat API extension requires the following packages:

	PHP [http://php.net] ^5.6

	behat/behat [http://behat.org] ^3.0

	guzzlehttp/guzzle [http://guzzlephp.org] ^6.0

	beberlei/assert [https://github.com/beberlei/assert/] ^2.1

	firebase/php-jwt [https://github.com/firebase/php-jwt/] ^4.0 | ^5.0

You do not need to add any of these to your own composer.json file as the extension requires them.

Installation

Using composer

Install the extension by adding the following to your composer.json file:

{
 "require-dev": {
 "imbo/behat-api-extension": "^2.1"
 }
}

and then updating your dependencies by issuing composer update imbo/behat-api-extension.

Configuration

After you have installed the extension you need to activate it in your Behat configuration file (for instance behat.yml):

default:
 suites:
 default:
 # ...

 extensions:
 Imbo\BehatApiExtension: ~

The following configuration options are required for the extension to work as expected:

	Key

	Type

	Default value

	Description

	apiClient.base_uri

	string

	http://localhost:8080

	Base URI of the application under test. Must be connectable for the tests to execute.

It should be noted that everything in the apiClient configuration array is passed directly to the Guzzle Client instance used internally by the extension.

Example of a configuration file with several configuration entries:

default:
 suites:
 default:
 # ...

 extensions:
 Imbo\BehatApiExtension:
 apiClient:
 base_uri: http://localhost:8080
 timeout: 5.0
 verify: false

Refer to the Guzzle documentation [http://docs.guzzlephp.org/en/stable/] for available configuration options for the Guzzle client.

Upgrading

This section will cover breaking changes between major versions and other related information to ease upgrading to the latest version.

Migrating from v1.x to v2.x

Changes

	Configuration change

	Renamed public methods

	Updated steps

	Functions names for the JSON matcher

	Exceptions

Configuration change

In v1 the extension only had a single configuration option, which was base_uri. This is still an option in v2, but it has been added to an apiClient key.

v1 behat.yml

default:
 suites:
 default:
 # ...

 extensions:
 Imbo\BehatApiExtension:
 base_uri: http://localhost:8080

v2 behat.yml

default:
 suites:
 default:
 # ...

 extensions:
 Imbo\BehatApiExtension:
 apiClient:
 base_uri: http://localhost:8080

Renamed public methods

The following public methods in the Imbo\BehatApiExtension\Context\ApiContext class have been renamed:

	v1 method name

	v2 method name

	givenIAttachAFileToTheRequest

	addMultipartFileToRequest

	givenIAuthenticateAs

	setBasicAuth

	givenTheRequestHeaderIs

	addRequestHeader

	giventhefollowingformparametersareset

	setRequestFormParams

	givenTheRequestBodyIs

	setRequestBody

	givenTheRequestBodyContains

	setRequestBodyToFileResource

	whenIRequestPath

	requestPath

	thenTheResponseCodeIs

	assertResponseCodeIs

	thenTheResponseCodeIsNot

	assertResponseCodeIsNot

	thenTheResponseReasonPhraseIs

	assertResponseReasonPhraseIs

	thenTheResponseStatusLineIs

	assertResponseStatusLineIs

	thenTheResponseIs

	assertResponseIs

	thenTheResponseIsNot

	assertResponseIsNot

	thenTheResponseHeaderExists

	assertResponseHeaderExists

	thenTheResponseHeaderDoesNotExist

	assertResponseHeaderDoesNotExists

	thenTheResponseHeaderIs

	assertResponseHeaderIs

	thenTheResponseHeaderMatches

	assertResponseHeaderMatches

	thenTheResponseBodyIsAnEmptyObject

	assertResponseBodyIsAnEmptyJsonObject

	thenTheResponseBodyIsAnEmptyArray

	assertResponseBodyIsAnEmptyJsonArray

	thenTheResponseBodyIsAnArrayOfLength

	assertResponseBodyJsonArrayLength

	thenTheResponseBodyIsAnArrayWithALengthOfAtLeast

	assertResponseBodyJsonArrayMinLength

	thenTheResponseBodyIsAnArrayWithALengthOfAtMost

	assertResponseBodyJsonArrayMaxLength

	thenTheResponseBodyIs

	assertResponseBodyIs

	thenTheResponseBodyMatches

	assertResponseBodyMatches

	thenTheResponseBodyContains

	assertResponseBodyContainsJson

Some methods have also been removed (as the result of removed steps):

	whenIRequestPathWithBody

	whenIRequestPathWithJsonBody

	whenISendFile

Updated steps

v1 contained several When steps that could configure the request as well as sending it, in the same step. These steps has been removed in v2.0.0, and the extension now requires you to configure all aspects of the request using the Given steps prior to issuing one of the few When steps.

Removed / updated steps

	Given the request body is :string

	When I request :path using HTTP :method with body: <PyStringNode>

	When I request :path using HTTP :method with JSON body: <PyStringNode>

	When I send :filePath (as :mimeType) to :path using HTTP :method

	Then the response body is an empty object

	Then the response body is an empty array

	Then the response body is an array of length :length

	Then the response body is an array with a length of at least :length

	Then the response body is an array with a length of at most :length

	Then the response body contains: <PyStringNode>

Given the request body is :string

This step now uses a <PyStringNode> instead of a regular string:

v1

Given the request body is "some data"

v2

Given the request body is:
 """
 some data
 """

When I request :path using HTTP :method with body: <PyStringNode>

The body needs to be set using a Given step and not in the When step:

v1

When I request "/some/path" using HTTP POST with body:
 """
 {"some":"data"}
 """

v2

Given the request body is:
 """
 {"some":"data"}
 """
When I request "/some/path" using HTTP POST

When I request :path using HTTP :method with JSON body: <PyStringNode>

The Content-Type header and body needs to be set using Given steps:

v1

When I request "/some/path" using HTTP POST with JSON body:
 """
 {"some":"data"}
 """

v2

Given the request body is:
 """
 {"some":"data"}
 """
And the "Content-Type" request header is "application/json"
When I request "/some/path" using HTTP POST

When I send :filePath (as :mimeType) to :path using HTTP :method

These steps must be replaced with the following:

v1

When I send "/some/file.jpg" to "/some/endpoint" using HTTP POST

When I send "/some/file" as "application/json" to "/some/endpoint" using HTTP POST

v2

Given the request body contains "/some/file.jpg"
When I request "/some/endpoint" using HTTP POST

Given the request body contains "/some/file"
And the "Content-Type" request header is "application/json"
When I request "/some/endpoint" using HTTP POST

The first form in the old and new versions will guess the mime type of the file and set the Content-Type request header accordingly.

Then the response body is an empty object

Slight change that adds “JSON” in the step text for clarification:

v1

Then the response body is an empty object

v2

Then the response body is an empty JSON object

Then the response body is an empty array

Slight change that adds “JSON” in the step text for clarification:

v1

Then the response body is an empty array

v2

Then the response body is an empty JSON array

Then the response body is an array of length :length

Slight change that adds “JSON” in the step text for clarification:

v1

Then the response body is an array of length 5

v2

Then the response body is a JSON array of length 5

Then the response body is an array with a length of at least :length

Slight change that adds “JSON” in the step text for clarification:

v1

Then the response body is an array with a length of at least 5

v2

Then the response body is a JSON array with a length of at least 5

Then the response body is an array with a length of at most :length

Slight change that adds “JSON” in the step text for clarification:

v1

Then the response body is an array with a length of at most 5

v2

Then the response body is a JSON array with a length of at most 5

Then the response body contains: <PyStringNode>

Slight change that adds “JSON” in the step text for clarification:

v1

Then the response body contains:
 """
 {"some": "value"}
 """

v2

Then the response body contains JSON:
 """
 {"some": "value"}
 """

Functions names for the JSON matcher

When recursively checking a JSON response body, some custom functions exist that is represented as the value in a key / value pair. Below is a table of all available functions in v1 along with the updated names used in v2:

	v1 function

	v2 function

	@length(num)

	@arrayLength(num)

	@atLeast(num)

	@arrayMinLength(num)

	@atMost(num)

	@arrayMaxLength(num)

	<re>/pattern/</re>

	@regExp(/pattern/)

v2 have also added more such functions, refer to the Custom matcher functions and targeting section for a complete list.

Exceptions

The extension will from v2 on throw native PHP exceptions or namespaced exceptions (like for instance Imbo\BehatApiExtension\Exception\AssertionException). In v1 exceptions could come directly from beberlei/assert, which is the assertion library used in the extension. The fact that the extension uses this library is an implementation detail, and it should be possible to switch out this library without making any changes to the public API of the extension.

If versions after v2 throws other exceptions it should be classified as a bug and fixed accordingly.

Set up the request

The following steps can be used prior to sending a request.

Available steps

	Given I attach :path to the request as :partName

	Given the following multipart form parameters are set: <TableNode>

	Given I am authenticating as :username with password :password

	Given the :header request header is :value

	Given the :header request header contains :value

	Given the following form parameters are set: <TableNode>

	Given the request body is: <PyStringNode>

	Given the request body contains :path

	Given the response body contains a JWT identified by :name, signed with :secret: <PyStringNode>

Given I attach :path to the request as :partName

Attach a file to the request (causing a multipart/form-data request, populating the $_FILES array on the server). Can be repeated to attach several files. If a specified file does not exist an InvalidArgumentException exception will be thrown. :path is relative to the working directory unless it’s absolute.

Examples:

	Step

	:path

	Entry in $_FILES on the server (:partName)

	Given I attach “/path/to/file.jpg” to the request as “file1”

	/path/to/file.jpg

	$_FILES[‘file1’]

	Given I attach “c:\some\file.jpg” to the request as “file2”

	c:\some\file.jpg

	$_FILES[‘file2’]

	Given I attach “features/some.feature” to the request as “feature”

	features/some.feature

	$_FILES[‘feature’]

This step can not be used when sending requests with a request body. Doing so results in an InvalidArgumentException exception.

Given the following multipart form parameters are set: <TableNode>

This step can be used to set form parameters (as if the request is a <form> being submitted). A table node must be used to specify which fields / values to send:

Given the following multipart form parameters are set:
 | name | value |
 | foo | bar |
 | bar | foo |
 | bar | bar |

The first row in the table must contain two values: name and value. The rows that follows are the fields / values you want to send. This step sets the HTTP method to POST by default and the Content-Type request header to multipart/form-data.

This step can not be used when sending requests with a request body. Doing so results in an InvalidArgumentException exception.

To use a different HTTP method, simply specify the wanted method in the When I request :path using HTTP :method step.

Given I am authenticating as :username with password :password

Use this step to set up basic authentication to the next request.

Examples:

	Step

	:username

	:password

	Given I am authenticating as “foo” with password “bar”

	foo

	bar

Given the :header request header is :value

Set the :header request header to :value. Can be repeated to set multiple headers. When repeated with the same :header the last value will be used.

Trying to force specific headers to have certain values combined with other steps that ends up modifying request headers (for instance attaching files) can lead to undefined behavior.

Examples:

	Step

	:header

	:value

	Given the “User-Agent” request header is “test/1.0”

	User-Agent

	test/1.0

	Given the “Accept” request header is “application/json”

	Accept

	application/json

Given the :header request header contains :value

Add :value to the :header request header. Can be repeated to set multiple headers. When repeated with the same :header the header will be converted to an array.

Examples:

	Step

	:header

	:value

	Given the “X-Foo” request header contains “Bar”

	X-Foo

	Bar

Given the following form parameters are set: <TableNode>

This step can be used to set form parameters (as if the request is a <form> being submitted). A table node must be used to specify which fields / values to send:

Given the following form parameters are set:
 | name | value |
 | foo | bar |
 | bar | foo |
 | bar | bar |

The first row in the table must contain two values: name and value. The rows that follows are the fields / values you want to send. This step sets the HTTP method to POST by default and the Content-Type request header to application/x-www-form-urlencoded, unless the step is combined with Given I attach :path to the request as :partName, in which case the Content-Type request header will be set to multipart/form-data and all the specified fields will be sent as parts in the multipart request.

This step can not be used when sending requests with a request body. Doing so results in an InvalidArgumentException exception.

To use a different HTTP method, simply specify the wanted method in the When I request :path using HTTP :method step.

Given the request body is: <PyStringNode>

Set the request body to a string represented by the contents of the <PyStringNode>.

Examples:

Given the request body is:
 """
 {
 "some": "data"
 }
 """

Given the request body contains :path

This step can be used to set the contents of the file at :path in the request body. If the file does not exist or is not readable the step will fail.

Examples:

	Step

	:path

	Given the request body contains “/path/to/file”

	/path/to/file

The step will figure out the mime type of the file (using mime_content_type [http://php.net/mime_content_type]) and set the Content-Type request header as well. If you wish to override the mime type you can use the Given the :header request header is :value step after setting the request body.

Given the response body contains a JWT identified by :name, signed with :secret: <PyStringNode>

This step can be used to prepare the JWT [https://jwt.io/] custom matcher function with data that it is going to match on. If the response contains JWTs these can be registered with this step, then matched with the Then the response body contains JSON: <PyStringNode> step after the response has been received. The <PyStringNode> represents the payload of the JWT:

Examples:

Given the response body contains a JWT identified by "my JWT", signed with "some secret":
 """
 {
 "some": "data",
 "value": "@regExp(/(some|expression)/i)"
 }
 """

The above step would register a JWT which can be matched with @jwt(my JWT) using the @jwt() custom matcher function. The way the payload is matched is similar to matching a JSON response body, as explained in the Then the response body contains JSON: <PyStringNode> section, which means custom matcher functions can be used, as seen in the example above.

Send the request

After setting up the request it can be sent to the server in a few different ways. Keep in mind that all configuration regarding the request must be done prior to any of the following steps, as they will actually send the request.

Available steps

	When I request :path

	When I request :path using HTTP :method

When I request :path

Request :path using HTTP GET. Shorthand for When I request :path using HTTP GET.

When I request :path using HTTP :method

:path is relative to the base_uri configuration option, and :method is any HTTP method, for instance POST or DELETE. If :path starts with a slash, it will be relative to the root of base_uri.

Examples:

Assume that the ``base_uri`` configuration option has been set to ``http://example.com/dir`` in the following examples.

	Step

	:path

	:method

	Resulting URI

	When I request “/?foo=bar&bar=foo”

	/?foo=bar&bar=foo

	GET

	http://example.com/?foo=bar&bar=foo

	When I request “/some/path” using HTTP DELETE

	/some/path

	DELETE

	http://example.com/some/path

	When I request “foobar” using HTTP POST

	foobar

	POST

	http://example.com/dir/foobar

Verify server response

After a request has been sent, some steps exist that can be used to verify the response from the server.

Available steps

	Then the response code is :code

	Then the response code is not :code

	Then the response reason phrase is :phrase

	Then the response reason phrase is not :phrase

	Then the response reason phrase matches :pattern

	Then the response status line is :line

	Then the response status line is not :line

	Then the response status line matches :pattern

	Then the response is :group

	Then the response is not :group

	Then the :header response header exists

	Then the :header response header does not exist

	Then the :header response header is :value

	Then the :header response header is not :value

	Then the :header response header matches :pattern

	Then the response body is an empty JSON object

	Then the response body is an empty JSON array

	Then the response body is a JSON array of length :length

	Then the response body is a JSON array with a length of at least :length

	Then the response body is a JSON array with a length of at most :length

	Then the response body is: <PyStringNode>

	Then the response body is not: <PyStringNode>

	Then the response body matches: <PyStringNode>

	Then the response body contains JSON: <PyStringNode>

	Regular value matching

	Custom matcher functions and targeting

Then the response code is :code

Asserts that the response code equals :code.

Examples:

	Then the response code is 200

	Then the response code is 404

Then the response code is not :code

Asserts that the response code does not equal :code.

Examples:

	Then the response code is not 200

	Then the response code is not 404

Then the response reason phrase is :phrase

Assert that the response reason phrase equals :phrase. The comparison is case sensitive.

Examples:

	Then the response reason phrase is “OK”

	Then the response reason phrase is “Bad Request”

Then the response reason phrase is not :phrase

Assert that the response reason phrase does not equal :phrase. The comparison is case sensitive.

Examples:

	Then the response reason phrase is not “OK”

	Then the response reason phrase is not “Bad Request”

Then the response reason phrase matches :pattern

Assert that the response reason phrase matches the regular expression :pattern. The pattern must be a valid regular expression, including delimiters, and can also include optional modifiers.

Examples:

	Then the response reason phrase matches “/ok/i”

	Then the response reason phrase matches “/OK/”

For more information regarding regular expressions and the usage of modifiers, refer to the PHP manual [http://php.net/pcre].

Then the response status line is :line

Assert that the response status line equals :line. The comparison is case sensitive.

Examples:

	Then the response status line is “200 OK”

	Then the response status line is “304 Not Modified”

Then the response status line is not :line

Assert that the response status line does not equal :line. The comparison is case sensitive.

Examples:

	Then the response status line is not “200 OK”

	Then the response status line is not “304 Not Modified”

Then the response status line matches :pattern

Assert that the response status line matches the regular expression :pattern. The pattern must be a valid regular expression, including delimiters, and can also include optional modifiers.

Examples:

	Then the response status line matches “/200 ok/i”

	Then the response status line matches “/200 OK/”

For more information regarding regular expressions and the usage of modifiers, refer to the PHP manual [http://php.net/pcre].

Then the response is :group

Asserts that the response is in :group.

Allowed groups and their response code ranges are:

	Group

	Response code range

	informational

	100 to 199

	success

	200 to 299

	redirection

	300 to 399

	client error

	400 to 499

	server error

	500 to 599

Examples:

	Then the response is “informational”

	Then the response is “client error”

Then the response is not :group

Assert that the response is not in :group.

Allowed groups and their ranges are:

	Group

	Response code range

	informational

	100 to 199

	success

	200 to 299

	redirection

	300 to 399

	client error

	400 to 499

	server error

	500 to 599

Examples:

	Then the response is not “informational”

	Then the response is not “client error”

Then the :header response header exists

Assert that the :header response header exists. The value of :header is case-insensitive.

Examples:

	Then the “Vary” response header exists

	Then the “content-length” response header exists

Then the :header response header does not exist

Assert that the :header response header does not exist. The value of :header is case-insensitive.

Examples:

	Then the “Vary” response header does not exist

	Then the “content-length” response header does not exist

Then the :header response header is :value

Assert that the value of the :header response header equals :value. The value of :header is case-insensitive, but the value of :value is not.

Examples:

	Then the “Content-Length” response header is “15000”

	Then the “X-foo” response header is “foo, bar”

Then the :header response header is not :value

Assert that the value of the :header response header does not equal :value. The value of :header is case-insensitive, but the value of :value is not.

Examples:

	Then the “Content-Length” response header is not “15000”

	Then the “X-foo” response header is not “foo, bar”

Then the :header response header matches :pattern

Assert that the value of the :header response header matches the regular expression :pattern. The pattern must be a valid regular expression, including delimiters, and can also include optional modifiers. The value of :header is case-insensitive.

Examples:

	Then the “content-length” response header matches “/[0-9]+/”

	Then the “x-foo” response header matches “/(FOO|BAR)/i”

	Then the “X-FOO” response header matches “/^(foo|bar)$/”

For more information regarding regular expressions and the usage of modifiers, refer to the PHP manual [http://php.net/pcre].

Then the response body is an empty JSON object

Assert that the response body is an empty JSON object ({}).

Then the response body is an empty JSON array

Assert that the response body is an empty JSON array ([]).

Then the response body is a JSON array of length :length

Assert that the length of the JSON array in the response body equals :length.

Examples:

	Then the response body is a JSON array of length 1

	Then the response body is a JSON array of length 3

If the response body does not contain a JSON array, the test will fail.

Then the response body is a JSON array with a length of at least :length

Assert that the length of the JSON array in the response body has a length of at least :length.

Examples:

	Then the response body is a JSON array with a length of at least 4

	Then the response body is a JSON array with a length of at least 5

If the response body does not contain a JSON array, the test will fail.

Then the response body is a JSON array with a length of at most :length

Assert that the length of the JSON array in the response body has a length of at most :length.

Examples:

	Then the response body is a JSON array with a length of at most 4

	Then the response body is a JSON array with a length of at most 5

If the response body does not contain a JSON array, the test will fail.

Then the response body is: <PyStringNode>

Assert that the response body equals the text found in the <PyStringNode>. The comparison is case-sensitive.

Examples:

Then the response body is:
 """
 {"foo":"bar"}
 """

Then the response body is:
 """
 foo
 """

Then the response body is not: <PyStringNode>

Assert that the response body does not equal the value found in <PyStringNode>. The comparison is case sensitive.

Examples:

Then the response body is not:
 """
 some value
 """

Then the response body matches: <PyStringNode>

Assert that the response body matches the regular expression pattern found in <PyStringNode>. The expression must be a valid regular expression, including delimiters and optional modifiers.

Examples:

Then the response body matches:
 """
 /^{"FOO": ?"BAR"}$/i
 """

Then the response body matches:
 """
 /foo/
 """

Then the response body contains JSON: <PyStringNode>

Used to recursively match the response body (or a subset of the response body) against a JSON blob.

In addition to regular value matching some custom matching-functions also exist, for asserting value types, array lengths and so forth. There is also a regular expression type matcher that can be used to match string values.

Regular value matching

Assume the following JSON response for the examples in this section:

{
 "string": "string value",
 "integer": 123,
 "double": 1.23,
 "boolean": true,
 "null": null,
 "object":
 {
 "string": "string value",
 "integer": 123,
 "double": 1.23,
 "boolean": true,
 "null": null,
 "object":
 {
 "string": "string value",
 "integer": 123,
 "double": 1.23,
 "boolean": true,
 "null": null
 }
 },
 "array":
 [
 "string value",
 123,
 1.23,
 true,
 null,
 {
 "string": "string value",
 "integer": 123,
 "double": 1.23,
 "boolean": true,
 "null": null
 }
]
}

Example: Regular value matching of a subset of the response

Then the response body contains JSON:
 """
 {
 "string": "string value",
 "boolean": true
 }
 """

Example: Check values in objects

Then the response body contains JSON:
 """
 {
 "object":
 {
 "string": "string value",
 "object":
 {
 "null": null,
 "integer": 123
 }
 }
 }
 """

Example: Check numerically indexed array contents

Then the response body contains JSON:
 """
 {
 "array":
 [
 true,
 "string value",
 {
 "integer": 123
 }
]
 }
 """

Notice that the order of the values in the arrays does not matter. To be able to target specific indexes in an array a special syntax needs to be used. Please refer to Custom matcher functions and targeting for more information and examples.

Custom matcher functions and targeting

In some cases the need for more advanced matching arises. All custom functions is used in place of the string value they are validating, and because of the way JSON works, they need to be specified as strings to keep the JSON valid.

	Array length - @arrayLength / @arrayMaxLength / @arrayMinLength

	Variable type - @variableType

	Regular expression matching - @regExp

	Match specific keys in a numerically indexed array - <key>[<index>]

	Numeric comparison - @gt / @lt

	JWT token matching - @jwt

Array length - @arrayLength / @arrayMaxLength / @arrayMinLength

Three functions exist for asserting the length of regular numerically indexed JSON arrays, @arrayLength, @arrayMaxLength and @arrayMinLength. Given the following response body:

{
 "items":
 [
 "foo",
 "bar",
 "foobar",
 "barfoo",
 123
]
}

one can assert the exact length using @arrayLength:

Then the response body contains JSON:
 """
 {"items": "@arrayLength(5)"}
 """

or use the relative length matchers:

Then the response body contains JSON:
 """
 {"items": "@arrayMaxLength(10)"}
 """
And the response body contains JSON:
 """
 {"items": "@arrayMinLength(3)"}
 """

Variable type - @variableType

To be able to assert the variable type of specific values, the @variableType function can be used. The following types can be asserted:

	boolean / bool

	integer / int

	double / float

	string

	array

	object

	null

	scalar

	any

Given the following response:

{
 "boolean value": true,
 "int value": 123,
 "double value": 1.23,
 "string value": "some string",
 "array value": [1, 2, 3],
 "object value": {"foo": "bar"},
 "null value": null,
 "scalar value": 3.1416
}

the type of the values can be asserted like this:

Then the response body contains JSON:
 """
 {
 "boolean value": "@variableType(boolean)",
 "int value": "@variableType(integer)",
 "double value": "@variableType(double)",
 "string value": "@variableType(string)",
 "array value": "@variableType(array)",
 "object value": "@variableType(object)",
 "null value": "@variableType(null)",
 "scalar value": "@variableType(scalar)"
 }
 """

The boolean, integer and double types can also be expressed using bool, int and float respectively. There is no difference in the actual validation being executed.

For the @variableType(scalar) assertion refer to the is_scalar function [http://php.net/is_scalar] in the PHP manual as to what is considered to be a scalar.

When using any as a type, the validation will basically allow any types, including null. One can also match against multiple types using | (for instance @variableType(int|double|string)). When using multiple types the validation will succeed (and stop) as soon as the value being tested matches one of the supplied types. Validation is done in the order specified.

Regular expression matching - @regExp

To use regular expressions to match values, the @regExp function exists, that takes a regular expression as an argument, complete with delimiters and optional modifiers. Example:

Then the response body contains JSON:
 """
 {
 "foo": "@regExp(/(some|expression)/i)",
 "bar":
 {
 "baz": "@regExp(/[0-9]+/)"
 }
 }
 """

This can be used to match variables of type string, integer and float/double only, and the value that is matched will be cast to a string before doing the match. Refer to the PHP manual [http://php.net/pcre] regarding how regular expressions work in PHP.

Match specific keys in a numerically indexed array - <key>[<index>]

If you need to verify an element at a specific index within a numerically indexed array, use the key[<index>] notation as the key, and not the regular field name. Consider the following response body:

{
 "items":
 [
 "foo",
 "bar",
 {
 "some":
 {
 "nested": "object",
 "foo": "bar"
 }
 },
 [1, 2, 3]
]
}

If you need to verify the values, use something like the following step:

Then the response body contains JSON:
 """
 {
 "items[0]": "foo",
 "items[1]": "@regExp(/(foo|bar|baz)/)",
 "items[2]":
 {
 "some":
 {
 "foo": "@regExp(/ba(r|z)/)"
 }
 },
 "items[3]": "@arrayLength(3)"
 }
 """

If the response body contains a numerical array as the root node, you will need to use a special syntax for validation. Consider the following response body:

[
 "foo",
 123,
 {
 "foo": "bar"
 },
 "bar",
 [1, 2, 3]
]

To validate this, use the following step:

Then the response body contains JSON:
 """
 {
 "[0]": "foo",
 "[1]": 123,
 "[2]":
 {
 "foo": "bar"
 },
 "[3]": "@regExp(/bar/)",
 "[4]": "@arrayLength(3)"
 }
 """

Numeric comparison - @gt / @lt

To verify that a numeric value is greater than or less than a value, the @gt and @lt functions can be used respectively. Given the following response body:

{
 "some-int": 123,
 "some-double": 1.23,
 "some-string": "123"
}

one can compare the numeric values using:

Then the response body contains JSON:
 """
 {
 "some-int": "@gt(120)",
 "some-double": "@gt(1.20)",
 "some-string": "@gt(120)"
 }
 """
And the response body contains JSON:
 """
 {
 "some-int": "@lt(125)",
 "some-double": "@lt(1.25)",
 "some-string": "@lt(125)"
 }
 """

JWT token matching - @jwt

To verify a JWT in the response body the @jwt() custom matcher function can be used. The argument it takes is the name of a JWT token registered with the Given the response body contains a JWT identified by :name, signed with :secret: <PyStringNode> step earlier in the scenario.

Given the following response body:

{
 "value": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VyIjoiU29tZSB1c2VyIn0.DsGGNmDD-PBnwMLiQxeSHDGmKBSdP0lSmWuaiwSxfQE"
}

one can validate the JWT using a combination of two steps:

Register the JWT
Given the response body contains a JWT identified by "my JWT", signed with "secret":
 """
 {
 "user": "Some user"
 }
 """

Other steps ...

After the request has been made, one can match the JWT in the response
And the response body contains JSON:
 """
 {
 "value": "@jwt(my JWT)"
 }
 """

Extending the extension

If you want to implement your own assertions, or for instance add custom authentication for all requests made against your APIs you can extend the context class provided by the extension to access the client, request, request options, response and the array contains comparator properties. These properties are accessed via the protected $this->client, $this->request, $this->requestOptions, $this->response and $this->arrayContainsComparator properties respectively. Keep in mind that $this->response is not populated until the client has made a request, i.e. after any of the aforementioned @When steps have finished.

Add @Given’s, @When’s and/or @Then’s

If you want to add a @Given, @When and/or @Then step, simply add a method in your FeatureContext class along with the step using annotations in the phpdoc block:

<?php
use Imbo\BehatApiExtension\Context\ApiContext;
use Imbo\BehatApiExtension\Exception\AssertionFailedException as Failure;

class FeatureContext extends ApiContext {
 /**
 * @Then I want to check something
 */
 public function assertSomething() {
 // do some assertions on $this->response, and throw a Failure exception is the
 // assertion fails.
 }
}

With the above example you can now use Then I want to check something can be used in your feature files along with the steps defined by the extension.

Manipulate the API client

If you wish to manipulate the API client (GuzzleHttp\Client) this can be done in the initialization-phase:

<?php
use Imbo\BehatApiExtension\Context\ApiContext;
use GuzzleHttp\ClientInterface;
use GuzzleHttp\Middleware;
use Psr\Http\Message\RequestInterface;

class FeatureContext extends ApiContext {
 /**
 * Manipulate the API client
 *
 * @param ClientInterface $client
 * @return self
 */
 public function setClient(ClientInterface $client) {
 $stack = $client->getConfig('handler');
 $stack->push(Middleware::mapRequest(function(RequestInterface $request) {
 // Add something to the request and return the new instance
 return $request->withAddedHeader('Some-Custom-Header', 'some value');
 }));

 return parent::setClient($client);
 }
}

Register custom matcher functions

The extension comes with some built in matcher functions used to verify JSON-content (see Then the response body contains JSON: <PyStringNode>), like for instance @arrayLength and @regExp. These functions are basically callbacks to PHP methods / functions, so you can easily define your own and use them in your tests:

<?php
use Imbo\BehatApiExtension\Context\ApiContext;
use Imbo\BehatApiExtension\ArrayContainsComparator;

class FeatureContext extends ApiContext {
 /**
 * Add a custom function called @gt to the comparator
 *
 * @param ArrayContainsComparator $comparator
 * @return self
 */
 public function setArrayContainsComparator(ArrayContainsComparator $comparator) {
 $comparator->addFunction('gt', function($num, $gt) {
 $num = (int) $num;
 $gt = (int) $gt;

 if ($num <= $gt) {
 throw new InvalidArgumentException(sprintf(
 'Expected number to be greater than %d, got: %d.',
 $gt,
 $num
));
 }
 });

 return parent::setArrayContainsComparator($comparator);
 }
}

The above snippet adds a custom matcher function called @gt that can be used to check if a number is greater than another number. Given the following response body:

{
 "number": 42
}

the number in the number key could be verified with:

Then the response body contains JSON:
 """
 {
 "number": "@gt(40)"
 }
 """

Index

 _static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Behat API Extension

 		
 Requirements

 		
 Installation

 		
 Using composer

 		
 Configuration

 		
 Upgrading

 		
 Migrating from v1.x to v2.x

 		
 Configuration change

 		
 Renamed public methods

 		
 Updated steps

 		
 Functions names for the JSON matcher

 		
 Exceptions

 		
 Set up the request

 		
 Given I attach :path to the request as :partName

 		
 Given the following multipart form parameters are set: <TableNode>

 		
 Given I am authenticating as :username with password :password

 		
 Given the :header request header is :value

 		
 Given the :header request header contains :value

 		
 Given the following form parameters are set: <TableNode>

 		
 Given the request body is: <PyStringNode>

 		
 Given the request body contains :path

 		
 Given the response body contains a JWT identified by :name, signed with :secret: <PyStringNode>

 		
 Send the request

 		
 When I request :path

 		
 When I request :path using HTTP :method

 		
 Verify server response

 		
 Then the response code is :code

 		
 Then the response code is not :code

 		
 Then the response reason phrase is :phrase

 		
 Then the response reason phrase is not :phrase

 		
 Then the response reason phrase matches :pattern

 		
 Then the response status line is :line

 		
 Then the response status line is not :line

 		
 Then the response status line matches :pattern

 		
 Then the response is :group

 		
 Then the response is not :group

 		
 Then the :header response header exists

 		
 Then the :header response header does not exist

 		
 Then the :header response header is :value

 		
 Then the :header response header is not :value

 		
 Then the :header response header matches :pattern

 		
 Then the response body is an empty JSON object

 		
 Then the response body is an empty JSON array

 		
 Then the response body is a JSON array of length :length

 		
 Then the response body is a JSON array with a length of at least :length

 		
 Then the response body is a JSON array with a length of at most :length

 		
 Then the response body is: <PyStringNode>

 		
 Then the response body is not: <PyStringNode>

 		
 Then the response body matches: <PyStringNode>

 		
 Then the response body contains JSON: <PyStringNode>

 		
 Regular value matching

 		
 Custom matcher functions and targeting

 		
 Extending the extension

 		
 Add @Given’s, @When’s and/or @Then’s

 		
 Manipulate the API client

 		
 Register custom matcher functions

_static/comment-bright.png

_static/ajax-loader.gif

